
N -BVH: Neural ray queries with bounding volume hierarchies:
Supplemental document

PHILIPPE WEIER, ALEXANDER RATH, ÉLIE MICHEL, ILIYAN GEORGIEV, PHILIPP SLUSALLEK, and TAMY
BOUBEKEUR
In this supplemental document we provide further evaluation of the different
scenes presented in our paper. In particular, we compare a naive fixed-depth
tree cut against our hierarchical optimization and provide pseudo-code and
the parameters used for our tree-cut scheduling. We also provide further
insights into the different terms of the optimization loss used in our hybrid
path-tracing pipeline. Finally, we show the results of our full ablation study
for the scenes presented in the paper.

1 INTRODUCTION
Besides the additional evaluations of our method presented next, we
encourage the reader to check out our supplemental video showcas-
ing a real-time demo of our approach and our tree-cut optimisation
training scheme. The supplemental HTML viewer contains the re-
sults of all our tested configurations with memory footprints, FLIP
error maps and a side-by-side comparison with reference images.

2 TREE-CUT SCHEDULING
In our paper, we show the ability of our error-driven tree-cut opti-
misation to automatically adapt to the underlying complexity of the
signal (Section 5.1 in the paper). Here in Fig. 1 we demonstrate the
benefit of such an approach when compared to a fixed tree depth at
an equal node count.

Our error-driven construction starts from a tree cut with a single
node (the root), and splits nodes until a target training iteration 𝑡

is reached. Three user parameters drive the number of nodes that
get split at a subsequent training iteration, namely (i) the frequency
𝑓 at which a batch of splits occurs, (ii) the scaling factor 𝑠𝑛 > 1
applied to the current number of splits to perform in a batch and
(iii) a scaling factor 𝑠𝑡 > 1 applied to 𝑓 every time a batch of splits
is performed. As a result, our scheduler allocates a growing number
of splits every 𝑓 iterations while simultaneously decreasing the
frequency at which splits occur. Beyond the stopping iteration 𝑡 ,
the model keeps on learning with no further split of the BVH. For
our hybrid path tracing results, we use 𝑡 = 3000 and 𝑠𝑡 = 2 as well
as the following varying parameters depending on our target node
count:

Target node count 𝑓 𝑠𝑛

7 3000 2.0
155 300 2.0
1.2k 100 2.0
11k 50 2.3
33k 40 2.5
73k 50 3.2
142k 90 5.0

In Algorithm 1 we provide a pseudo-code to generate the number
of splits at a given iteration using the previously defined parameters.

Algorithm 1 Pseudo code for number of splits performed at training
iteration 𝑖𝑡𝑒𝑟 .

1: function getNumberOfSplits(iter)
2: if 𝑖𝑡𝑒𝑟 == 0 then
3: 𝑑𝑎𝑡𝑎 ← 𝐼𝑛𝑖𝑡𝑆𝑝𝑙𝑖𝑡𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝐷𝑎𝑡𝑎(𝑠𝑝𝑙𝑖𝑡𝑁𝑢𝑚 = 1 ,

4: 𝑠𝑝𝑙𝑖𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑓)
5: if 𝑖𝑡𝑒𝑟 > 𝑡 then
6: return 0
7: 𝑛𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 ← 0
8: if 𝑖𝑡𝑒𝑟 % 𝑓 == 0 then
9: 𝑛𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 ← 𝑑𝑎𝑡𝑎.𝑠𝑝𝑙𝑖𝑡𝑁𝑢𝑚

10: 𝑑𝑎𝑡𝑎.𝑠𝑝𝑙𝑖𝑡𝑁𝑢𝑚 ← 𝑑𝑎𝑡𝑎.𝑠𝑝𝑙𝑖𝑡𝑁𝑢𝑚 × 𝑠𝑛
11: 𝑑𝑎𝑡𝑎.𝑠𝑝𝑙𝑖𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← 𝑑𝑎𝑡𝑎.𝑠𝑝𝑙𝑖𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 × 𝑠𝑡
12: return 𝑛𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠

3000 train. steps

6000 train. steps

3000 train. steps

6000 train. steps

Statuette (ref) Fixed depth tree Optimised tree cut

FLIP: 0.0307 (full res) FLIP: 0.0280 (full res)

1

0

Fig. 1. Our error-driven tree-cut optimization vs a fixed-depth tree cut at
equal node count. Our tree-cut scheduling favors splitting high-error nodes
instead of low-error nodes. The effect of this can be seen in the loss error
maps shown after 3000 and 6000 iterations. While a naive fixed depth tree
cut leads to roughly uniform error reduction during training, our tree-cut
scheduling ensures that difficult-to-learn regions are split more often to
reduce the overall error in the N-BVH.

2 • Philippe Weier, Alexander Rath, Élie Michel, Iliyan Georgiev, Philipp Slusallek, and Tamy Boubekeur

0B 50MB 100MB
Total memory footprint (hash grid + nodes)

0.02

0.04

0.06
FL

IP
er

ro
r

Chess

33k * (1.1 MB)

0B 50MB 100MB

0.02

0.03

0.04

City Block

142k * (4.5 MB)

0B 50MB 100MB

0.02

0.04

0.06

Bonzai

142k * (4.5 MB)

0B 50MB 100MB
Total memory footprint (hash grid + nodes)

0.010

0.015

0.020

0.025

0.030

FL
IP

er
ro

r

Exhibition

33k * (1.1 MB)

0B 50MB 100MB

0.04

0.06

0.08

Andalusian Room

33k * (1.1 MB)

0B 50MB 100MB

0.005

0.010

0.015

0.020

Statuette

11k * (350KB)

7 nodes (0.2 KB) 155 (5 KB) 1.2k (40 KB) 11k (350KB) 33k (1.1 MB) 73k (2.3 MB) 142k (4.5 MB)

Fig. 2. Total memory footprint of our representation vs. reconstruction error. Along each curve we vary the hash-grid size; that size impacts the error much
less than the N-BVH node count. The asterisk indicates the node count chosen in the main results of the paper.

0 50 100 150 200
Training time (seconds)

0.03

0.04

0.05

0.06

FL
IP

er
ro

r

7 nodes

142k

Chess

0 50 100 150 200
Training time (seconds)

0.02

0.03

0.04

FL
IP

er
ro

r

7 nodes

142k

City Block

0 50 100 150 200
Training time (seconds)

0.04

0.06
FL

IP
er

ro
r

7 nodes

155

1.2k
11k

33k
73k 142k

Bonzai

0 50 100 150 200
Training time (seconds)

0.010

0.015

0.020

0.025

0.030

FL
IP

er
ro

r

7 nodes

142k

Exhibition

0 50 100 150 200
Training time (seconds)

0.06

0.08

0.10

0.12

FL
IP

er
ro

r

7 nodes

142k

Andalusian Room

0 50 100 150 200
Training time (seconds)

0.005

0.010

0.015

0.020

FL
IP

er
ro

r

7 nodes

142k

Statuette

Fig. 3. Training time vs. error. After an initial 1000-iteration cut optimization to reach a set total node count (indicated on plot), we plot FLIP error over an
additional 5000 training-only iterations.

N-BVH: Neural ray queries with bounding volume hierarchies: Supplemental document • 3
V

is
ib

ili
ty

D
ep

th
N

or
m

al
A

lb
ed

o
N

-B
V

H
/B

V
H

Ours Reference Abs Error

0

1

0

5

0

2

0

1

Fig. 4. Hybrid path tracing loss decomposition. We optimise the Bonzai
scene for a target node count of 40k nodes and show the absolute error
achieved for the visibility, depth, normal and albedo loss separately.

Table 1. We report the hash grid utilization by comparing the mean percent-
age of non-zero gradients over 100 batches of 218 rays sampled for different
hashmap sizes 𝑇 , and the percentage of space occupied by our N-BVH
(140k nodes) relative to the root node.

Occupied Non-zero gradients
Scene Volume 𝑇 = 214 𝑇 = 216 𝑇 = 218

Chess 3.2% 87% 82% 71%
City Block 4.5% 84% 79% 70%
Bonzai 8.1% 87% 85% 78%
Exhibition 2.1% 82% 76% 65%
Andalusian Room 1.7% 80% 74% 62%
Statuette 2.9% 84% 79% 69%

42 ms/frame (1×) 188 ms/frame (0.22×) 124 ms/frame (0.34×) 93 ms/frame (0.45×) 79 ms/frame (0.53×)

Ref Without LoD (226k nodes) LoD 3 (32k nodes) LoD 5 (2k nodes) LoD 6 (127 nodes)

Fig. 5. Primary ray intersection LoD switch. We train our N-BVH for a total of 7 levels of detail, each corresponding to a different number of nodes in the
learned tree cut. We then render using the most detailed LoD for primary rays, an one of the coarser LoD for secondary rays. For finer LoDs the perceived error
only slightly decreases while already providing a drastic speed-up. For coarse LoDs, close-up renders reveal missing shadows on high-frequency geometry but
still provide a solid approximation in the distance.

3 HASH-GRID SIZE VS. NODE COUNT
In Fig. 2 we present the additional results of our network memory
footprint ablation. As mentioned in the paper, the error decreases
most significantly by increasing the number ofN -BVH nodes rather
than increasing the hash-grid size. This behaviour is consistent
over the scenes we tested and demonstrates the ability of our N-
BVH to focus the underlying hash grid’s capacity on the sparse 3D
occupancy swept by the original surfaces.

4 TRAINING TIME VS ERROR
For the scenes presented in our paper, we plot the training times for
different node counts in Fig. 3. Training our entire pipeline ranges
from a few tens of seconds to 2-3 minutes for all the tested scenes.
We observe that long training times are not necessary to achieve
good reconstruction quality. What impacts training time (and error)
the most is again the N -BVH node count since a larger node count
increases the sample-traversal time.

5 LOSS ABLATION
In Fig. 4 we analyse the different components of our hybrid path
tracing loss and compute the absolute error with respect to their
corresponding reference. We observe that visibility and albedo are
generally simpler to learn than depth and normal. The latter often
presents high-frequency details that only a larger number of nodes
in the N -BVH allows to learn accurately.

6 HASH GRID UTILIZATION
In Table 1 we report the hash grid utilization for the different scenes
we tested. We note that even if the N-BVH only occupies a small
portion of the 3D space, we consistently query a much larger volume
of the hash grid’s occupancy thanks to the hash grid collisions.

4 • Philippe Weier, Alexander Rath, Élie Michel, Iliyan Georgiev, Philipp Slusallek, and Tamy Boubekeur

Algorithm 2 Pseudo code of our Neural Path Tracing pipeline.
1: function neuralPathTracing
2: for all 𝑝𝑖𝑥𝑒𝑙 ∈ 𝑖𝑚𝑎𝑔𝑒 do
3: 𝑟𝑎𝑦 ← 𝑐𝑎𝑚𝑒𝑟𝑎𝑅𝑎𝑦𝑔𝑒𝑛()
4: while 𝑟𝑎𝑦 != 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 do
5: 𝐵𝐿𝐴𝑆 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑇𝐿𝐴𝑆 (𝑟𝑎𝑦)
6: if 𝐵𝐿𝐴𝑆 != 𝑛𝑒𝑢𝑟𝑎𝑙 then
7: 𝑖𝑡𝑠 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑁𝑜𝑛𝑁𝑒𝑢𝑟𝑎𝑙𝐵𝐿𝐴𝑆 (𝑟𝑎𝑦)
8: else
9: 𝑖𝑡𝑠 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑁𝐵𝑉𝐻 (𝑟𝑎𝑦)

10: 𝑟𝑎𝑦 ← 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑅𝑎𝑦 (𝑟𝑎𝑦, 𝑖𝑡𝑠)
11: 𝑝𝑖𝑥𝑒𝑙 ← 𝑠𝑝𝑙𝑎𝑡𝑃𝑎𝑡ℎ𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑟𝑎𝑦)

12: function intersectNBVH(ray)
13: 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙𝑆𝑡𝑎𝑐𝑘 ← 𝑁𝐵𝑉𝐻𝑅𝑜𝑜𝑡

14: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐼𝑡𝑠 ← 𝐼𝑡𝑠 (𝑑𝑖𝑠𝑡 = ∞)
15: while 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙𝑆𝑡𝑎𝑐𝑘 != ∅ do
16: 𝑛𝑜𝑑𝑒 ← 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝑁𝐵𝑉𝐻𝑁𝑜𝑑𝑒 (𝑟𝑎𝑦)
17: 𝑟𝑎𝑦𝑄𝑢𝑒𝑟𝑦 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑁𝑜𝑑𝑒 (𝑟𝑎𝑦)
18: 𝑖𝑡𝑠 ← 𝑁𝐵𝑉𝐻𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐼𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (𝑟𝑎𝑦𝑄𝑢𝑒𝑟𝑦)
19: if 𝑖𝑡𝑠 .𝑑𝑖𝑠𝑡 < 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐼𝑡𝑠 .𝑑𝑖𝑠𝑡 then
20: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐼𝑡𝑠 ← 𝑖𝑡𝑠

21: return 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐼𝑡𝑠

Table 2. We separately report the average percentage of time spent on the
inference alone and the entire N-BVH traversal (including inference time).
The configurations used are the same as in our paper’s main comparison
(Fig. 6), corresponding to a low number of nodes () and a high number of
nodes ().

Low node count High node count
Scene Traversal Inference Traversal Inference

Chess 56.3% 32.6% 72.9% 33.1%
City Block 39.5% 19.3% 75.1% 30.6%
Bonzai 46.3% 23.3% 73.6% 29.5%
Exhibition 54.8% 26.9% 76.3% 30.7%
And. Room 35.8% 21.1% 59.8 % 26.7%
Statuette 66.7% 36.5% 87.7% 37.9%

7 PER-RAY LEVEL OF DETAIL
Finally, we describe a simple application of ourN -BVH LoD scheme
to accelerate our hybrid path tracing pipeline. While primary rays
have a large impact on the perceived error in the final rendered
image, most secondary rays can be less accurate without introduc-
ing high error. Therefore, we propose to switch the N-BVH to a
coarser level of detail (corresponding to a tree-cut with fewer nodes)
during secondary ray intersection. In Fig. 5 we show on our teaser
that this simple heuristic can drastically reduce the number of in-
ference queries and easily achieve 1.5–2× faster rendering times
for only a slight decrease in reconstruction quality. Transitioning
to a tree-cut with a low node count is predominantly noticeable in
the shadows, as they still demand a precise visibility estimate to
accurately replicate their high-frequency characteristics.

8 N -BVH TRAVERSAL PROFILING
In Table 2 we provide further insights into the performance of our
N-BVH by profiling the time spent on traversal. We report the
timings for traversing the N-BVH (including inference) and the
time spent on inference solely. The remaining time is spent on ray
generation and scattering, as well as TLAS and non-neural BLAS
traversal.

9 FURTHER IMPLEMENTATION DETAILS
Depth estimation. The order of the ray-query’s concatenated fea-

tures allows us to estimate depth from within nodes. The default
order follows the ray direction; when a ray query is issued from
within a node, we reverse that order. Then, an intersection occurs
inside the node only if the inferred distance is smaller than the
distance from the ray origin to the node’s exit point.

Neural path tracing inference pipeline. A pseudo code of our neu-
ral path tracing inference pipeline is described in Algorithm 2. Note
that when an N-BVH is intersected with a ray (function inter-
sectNBVH), we first get the next intersected node, compute the
ray-query encoding, pause the traversal to perform inference (in a
separate kernel), update the closest intersection and finally resume
the traversal until the traversal stack is empty.

	Abstract
	1 Introduction
	2 Tree-cut scheduling
	3 Hash-grid size vs. node count
	4 Training time vs error
	5 Loss ablation
	6 Hash grid Utilization
	7 Per-ray Level of Detail
	8 N-BVH Traversal Profiling
	9 Further Implementation Details

